
Preserving the Hand-drawn Appearance of Graphs
Beryl Plimmer1, Helen Purchase2, Hong Yul Yang1, Laura Laycock1

1Department of Computer Science
 University of Auckland

Private Bag 92019
Auckland, New Zealand

2 Computing Science Department

University of Glasgow
17 Lilybank Gardens
Glasgow, Scotland

ABSTRACT

When using a sketching tool to draw graphs, the edges need to appear hand-drawn. This is particularly the case
after edges have been repositioned – if the action of moving a node results in its edges appearing as straight lines,
the graph drawing will not retain its informal, hand-drawn appearance. The method for preserving the hand-drawn
appearance of graphs described here is based on user observations and takes into account the context of the edge.
The effectiveness of this algorithm was validated with a user study which suggests that people cannot distinguish the
generated edges from hand-drawn edges.

1. Introduction

Using hand-drawn diagrams is a proven, easy and
helpful technique in the early stages of design
[6][12]. The process of sketching aids the
communication of ideas, analysis of design, and
creativity, while allowing alternative designs to be
easily explored without concern for the cost of
changes. Sketches are often used to create initial
diagrammatic models of objects and processes: for
example, UML diagrams, circuit diagrams and ER
diagrams. Many of these diagrammatic forms are
graphs that consist of a set of nodes with edges
indicating the relationships between these nodes.

There are physical limitations to pencil and paper
graph sketching. During design a diagram can often
become convoluted and hard to understand as edges
and nodes are added to the graph or are altered
(Figure 1). To overcome this, the sketcher may need
to go through a messy process of erasing and
redrawing nodes and edges, or may need to restart the
diagram altogether, as it is not possible to drag nodes
around on paper.

Figure 1: A hand drawn graph can quickly become

messy without the ability to reposition nodes and edges

Computer-based sketch editing tools which allow
the sketcher to reposition nodes manually by
dragging them or which can apply an automatic
layout algorithm can assist with the problem of
tidying messy hand-drawn graphs.

Repositioning nodes in a sketched diagram
introduces a new problem. How should an edge
connected to a repositioned node appear after the
node has been repositioned? This is the problem of

edge reflow. Edge reflow is a common problem when
editing a graph (e.g. [5]); here we consider the
specific problem of edge reflow in when the graph is
drawn using a sketch tool.

There are three particular challenges that need to be
addressed when implementing sketch edge reflow:

(1) The hand-drawn appearance of the diagram.
Hand-drawing is a simple and intuitive design
process that is useful for brainstorming or
communication. Crucial to the process of
design is the hand-drawn appearance of a
sketch. Sketch-editing graph tools should
maintain the hand-drawn appearance of the
graph, so as to best represent the creative ideas
of the designer.
Designers’ performance changes when
working with designs of different visual
fidelity [14]. Hand-drawn sketches permit
designers to place emphasis on some areas
while leaving others hazy and ambiguous; this
helps exploration of alternative design ideas
[6][12]. Bailey and Konstan compared a stylus
based system against pencil and paper
sketching and against Authorware [4]. They
suggest that designers find hand-drawn designs
most useful in the process of creation and that
pencil and paper is most effective for
exploring and communicating designs.
A sketched edge, once reflowed, should
therefore leave the sketch with a natural hand-
drawn appearance so that the advantages of
sketching remain [14].

(2) Intelligent reflow. An edge does not exist in
isolation: it is part of a graph of other nodes
and edges. While previous implementations of
graph sketch tools have used several
techniques to retain the hand-drawn
appearance of a reflowed edge (as described in
Section 2 below), none have considered its
context and its interaction with other visible
elements of the diagram. For example, a
reflowed edge in a graph should be adjusted so
that does not pass through other nodes in the
graph (Figure 2).

Figure 2: Intelligent reflow: The edge between a and b is

best reflowed around z rather than going through it.

Such intelligent reflow is particularly
important if automatic layout algorithms are to
be applied to a hand-drawn diagram.

(3) User-centered design and validation. A reflow
algorithm could be designed based on the
intuitions of its designer. However, defining a
reflow algorithm that does not take into
account current sketching practices may result
in a diagram that looks awkward or unnatural,
or which follows conventions not typically
used by sketchers.
A reflow algorithm is best designed after the
graph drawing practices of sketchers have been
observed. The results of this algorithm should
be validated empirically so as to confirm that
the reflowed edges are indistinguishable from
hand-drawn edges, this proving its
effectiveness.

In this paper, we present a new algorithm for
determining the look of an edge after either its source
or destination node has been repositioned in a graph
sketch-editing tool. The advantages of this algorithm
are:
• Its design was based on observations of users

creating graphs;
• It is simple, being based on a library of hand-

drawn edges;
• It preserves the hand-drawn appearance of an

edge;
• It takes into account the context of the edge

within the structure of the graph as a whole;
• Its output has been compared with hand-drawn

edges, and its effectiveness validated with user
studies.

Edge reflow is used in both the manual
repositioning of a connected node and in the
application of an automatic layout algorithm to the
whole graph: the algorithm presented here can be
used in both contexts.

2. Related Work

Various techniques have been explored to maintain
the appearance of lines. Igarashi et al. [7] describe an
‘As-rigid-as-possible’ curve editing approach to
hand-drawn line editing for cartoon characters. This
process involved stretching a curve, by either scaling
it to its new width or by a process of scale adjustment

the curve acts as though it is a rigid object being
pulled outward. These techniques are intuitive ways
to morph an inflated graphic, but are not intended to
preserve the hand-drawn appearance and may cause
the curve to react in an unnatural way.

Arvo and Novins [2] explored edge reflow and
preservation of sketch appearance within their
blackboard style graphing system. They suggested
techniques of edge reflow to preserve the hand-drawn
appearance while also having the ink reflow in a
predictable and intuitive manner. Their approach
varied depending on whether: the new baseline
(Figure 3) is shorter than the original baseline
(compression); the new baseline is shorter than the
original stroke length but is larger than the original
baseline (stretch) the new baseline is longer than the
original stroke length (over stretch).

Figure 3: The straight line is the baseline of the arching

connector stroke.

Figure 4: An illustration of the compression and stretch

method [2]. When the centre node in drawing (a) is moved
to the left, drawing (b) is created, with one connection
stretched and interpolated with a straight line, the other

compressed and interpolated with an ellipse.

Their metaphor is a piece of string. To compress
the stroke points are interpolated with an ellipse
(Figure 4a). To stretch a stroke (Figure 4b) it is
interpolated with a straight line of the same length.
The ratio of original stroke to straight line used for
interpolation is decided by the amount of stretch: the
greater the stretch the less the original stroke and the
more of the straight line. This provides a smooth
stretch and maintains the stroke length as though the
stroke is a string being pulled and all the curves are
slowly pulled out. When the total length of the stroke
is less than the length of the straight line (over-
stretched) the edge becomes perfectly straight. Arvo
and Novins also presumed that it was important to
maintain the relative position of the start point of an
edge to the midpoint and boundary of the node and
perform complex calculations to preserve this.

Reid et al [10] took a simpler approach to reflow
maintaining more of the original appearance but
avoiding straight edges. The stroke is rotated so its

baseline lies flat, then scaled to the appropriate length
along the horizontal and the height halved if it is
above a given threshold. The problem with this
approach is that strokes when heavily compressed
look unnatural and stressed (Figure 5).

Figure 5: The top segment is the original; when node b

is brought close to a, an unnatural looking edge is created

Ao et al. [3] considered appearance preservation in
their network structure graph diagram sketching tool.
When a container (node) is translated the associated
connectors (edges) are moved with it. Two methods
are reported: an uncomplicated scale to the new
dimensions similar to [10]; and “stretching” by
morphing of the stroke in a similar manner to [2].
This approach works in the majority of situations but
in cases of extreme angles (elbows) it can cause loss
of shape, in which case the scaling performs better.

All the above approaches are limited if we want to
maintain the hand-drawn appearance in all situations:
Arvo and Novins’ [2] can result in perfectly straight
edges while unnaturally curved edges occur in some
cases with the Reid et al. [10] approach. Ao et al. [3]
algorithms can result in both over-curved and over-
straightened edges. Furthermore, none of these
algorithms consider the context of the edge. This can
result in edges cutting though nodes and intersecting
with other edges; this compromises the hand-drawn
appearance of the diagram.

3. Our edge reflow algorithm

3.1 Observational study

Before designing new algorithmic approaches to
edge reflow we undertook a small informal
observational study of how people create hand drawn
graphs. Eight participants were asked to create two
graphs each from a description and to then “tidy” the
graph by repositioning the nodes.

Our observations of this process revealed that:
• When connecting two nodes, participants

usually drew an approximately straight edge
lying on the virtual line between the mid-points
of the nodes, except when:

• (i) a third node lay on this virtual line (as
between nodes p and o in Figure 6): in this case,
the edge was routed around this node;

• (ii) there were two edges between a pair of
nodes (as between nodes m and f in Figure 6):
in this case, the edges were separated either side
of this virtual line.

• Few participants could draw perfectly straight
edges.

• The attachment points for an edge were close to
the boundaries of the end nodes.

• People often crossed edges during construction
but would eliminate crossings when tidying the
graph. There were no incidences of edges
crossing a node.

We did not observe any individual variation in
edge style or the placement of node attachment
points, and our observations and informal discussions
with the participants suggest that they focus on the
logical relationships between the nodes rather than
the visual appearance of the edges.

Figure 6: A typical initial construction of a graph

These observations formed the basis of the design
of our new edge reflow algorithm to be used when
nodes are repositioned either manually or
automatically. Having observed no obvious user
edge-drawing variations, the algorithm is designed to
be generic, rather than specific to users’ drawing
styles.
3.2 Algorithm Design

Based on our observations, we suggest that, in
order to maintain the hand-drawn appearance of the
graph drawing, a reflowed edge should
• be a more-or-less straight edge (but not an

exactly straight edge);
• lie approximately on the straight line between

the centre points of the nodes.
This should be the case unless:
• there are multiple edges between a pair of nodes

(in which case the edges should repel each other
slightly), or

• the straight line between the nodes intersects
with other nodes (in which case the edge should
flow smoothly around the other nodes).

Our proposed solution is simple: when a node is
repositioned, each of its connected edges is replaced
by a generated edge.

The attachment points of these new edges are
positioned at a small random offset from the point
where the virtual straight line between two node
centers crosses the node boundary, and at a small
random offset within or outside the edge boundary.

Where there are multiple edges between a pair of
nodes the new edges are repelled either side of the
straight line and from each other so that there is
visual separation.

Where the virtual straight line between an edge’s
nodes crosses other nodes, the generated edge is
flowed around the node. Simply repelling the edge
from the centre of the node results in an unnaturally
curved edge with a flawless curve path. We explored
a number of different functions to smooth the flow of
the edge around a node, including a Gauss function
[1], and a cosine function. We chose the cosine
function (which we call Context Reflow), as it seems
to give the most natural appearance, being not too
sharp, and allowing multiple areas of force repulsion
to be used without the stroke appearing too warped or
disfigured. Figure 7 shows an example of each of
these reflow approaches.

3.3 Implementation

There are four steps to reflowing an edge: the end
points are established, a ‘straightish’ edge of
appropriate length is generated, other node
intersections are detected, and repulsion is used to
push the edge away from other nodes.

The endpoints are established by identifiying the
points of intersection between a straight line between
the node centre points and the node boundaries
(Figure 8, a and b) and then offsetting each by a
small random amount.

The edge is generated from a small library of hand-
drawn ‘straightish’ strokes of different lengths: this
library was created and has been extended by many
different users over the past two years. The new
unique edge is generated from this library by random
morphing between random pairs. The new edge is
placed on the graph (Figure 8, edge ab).

Figure 7: Node avoidance: a) no reflow, b) simple

force, c) Gauss function force, d) Cosine function force
(Context Reflow).

The new edge is then checked to see if it intersects
with any other nodes. If there are no intersections the

edge creation is complete. If intersections are
detected the context reflow is applied.

The first step in the context reflow is to establish
the exclusion zone. To do this all nodes that the edge
intersects with are grouped and their bounding box
found. The maximum distance for the displacement
of the edge is calculated as the distance from the
point on the edge nearest the midpoint of this
exclusion zone to the most distant edge of the
bounding box plus a padding value (Figure 8, c).

The maximum displacement is applied to this
point. All other points are moved in relation to this
point using formula (1). This allows the reflow to
bend the edge over all the points in one arc. On a
crowded graph the reflowed edge may cut through
the corners of the bounding box; these cases are rare
and cause few problems. A more sophisticated reflow
would have to consider the individual bounding
boxes of all the interfering nodes.

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⋅
Distmax

distCosntdisplaceme
2
π (1)

Figure 8: Context reflow: the edge is first placed between
the connection points a b, and then reflowed around the

bounding box of the intersecting nodes.

Where there are two edges between a pair of nodes
the endpoints are pushed away from each other and
the edges recreated between the new endpoints. This
results in two ‘straightish’, and separated, edges
between the nodes. Future enhancements to the
system will include curving the edges away from
each other.

4. Evaluation

Our aim was to produce reflowed edges that
maintain the hand-drawn appearance of the graph
drawing. Success can be determined by seeing
whether the generated edges are indistiguishable
from hand-drawn edges.

12 drawings of the same graph containing 10
nodes and 15 edges (referred to as D1-D12) were
created by one of the authors. All the edges in D1
were hand-drawn (Figure 9). All the edges in D12
were system-generated, (Figure 10). The remaining
D2-D10 drawings each had between 6 and 9
generated edges, with the remaining edges being
hand-drawn (Figure 11).1

1 A minor oversight meant that three of the drawings (D5, D6 and
D7) were each missing one edge. This does not affect the validity
of our experiment as these three edges are a small proportion of the
total number of edges that each participant made judgements on.

Figure 9: D1: All the edges are hand-drawn

Figure 10: D12: All the edges are system-generated

Figure 11: D8: Six edges are hand-drawn; nine edges

are system-generated.

The following constraints were taken into account

when creating these graph drawings:
• It is well-known that edge crossings can

negatively affect perticipants’ view and use of a
graph drawing [8][9]. We did not want
participants to be biased towards choosing
edges that cross as the generated edges simply
because they appeared awkward or anomalous.
We therefore chose a non-planar graph which
can be drawn with a minimum of two crossings.
All 12 graph drawings had not more then four
edge crossings: some of these were hand-drawn
while some were generated.

• The nodes were all labelled, so that we could
keep a record of which edges were system-
generated. The same labels were used on all
graph drawings, but different edges were chosen
to be the ones that were system-generated.

• Some of the hand-drawn edges were
deliberately drawn as curves (Figure 12).

Ten participants were shown all 12 graph
drawings and asked to distinguish between hand-
drawn and system-generated edges. They marked on
the drawing with a pen, indicating those edges that
they thought were system-generated with a C and
those that they thought hand-drawn with a P. There
was no time limit, and participants were encouraged
to mark all the edges on all graph drawings.

Figure 12: D5: The edge between nodes g and f has

been hand-drawn.

The data collected was the number of correctly
identified hand-drawn edges (HD), the number of
correctly identified system-generated edges (SG), the
number of hand-drawn edges incorrecly identified as
system-generated edges (HDSG) and the number of
system-generated edges incorrectly identified as
hand-drawn (SGHD). Any informal comments made
by the participants were also noted.

5. Results

Overall, 50.5% of the hand-drawn edges were
classified as system-generated, and 52.6% of the
system-generated edges were classified hand drawn.2

The data for the ‘mixed-edge’ drawings (D2-D11)
was aggregated; the data for the ‘control’ drawings
(D1, D12) was analysed separately (Table 1).

 D2-D11 D1 D12

HD

(correct)

Mean 52.29 60.00 NA

Max 75.00 86.67 NA

Min 29.31 26.67 NA

HDSG

(incorrect)

Mean 51.01 40.00 NA
Max 75.41 73.33 NA
Min 29.17 13.33 NA

SG

(correct)

Mean 46.71 NA 49.63

Max 59.72 NA 66.67

Min 34.48 NA 26.67

SGHD

(incorrect)

Mean 53.04 NA 50.37

Max 65.52 NA 73.33

Min 38.46 NA 33.33

Table 1: Mean, max and min percent of correct and
incorrect classifications over all participants.

Paired t-tests were used to determine whether there
was any significant difference between (a) the
percentage of hand-drawn edges correctly identified
(HD) and those incorrectly identified (HDSG) and (b)
the percentage of system-generated edges correctly
identified (SG) and those incorrectly identified
(SGHD). In both cases, the probability of the
classifications having been made simply by chance
was high, and over the traditional p-value of 0.05
used for testing statistical significance (HD/HDSG:
p=0.452; SG/SGHD: p=0.117). This proves that

2 Although all participants were encouraged to classify all the

edges, 10 of the 120 marked-up graphs had at least one missing
label: these drawings were removed from the analysis.

participants could not distinguish between system-
generated and hand-drawn edges, and that their
decisions were as good as if they had been random.

We note, however, that the difference in the
averages for the HD/HDSG comparison (1.28%) is
less than that for SG/SGHD comparison (6.33%) by a
factor of almost 5, suggesting that it was easier to
correctly classify system-generated edges than hand-
drawn ones. This observation is also shown in the
narrower range between maximum and minimum
percentages for identification of system generated
edges than hand-drawn ones.

However, the two control drawings show that there
was greater success with a completely hand-drawn
diagram (mean 60.00%) than with a drawing with all
edges system-generated (mean 49.63%).

The qualitative questionnaire data revealed that the
following features were considered important for
classification:
• The ‘curviness’ of the edge. Many participants

said that curved edges were hand-drawn and
straight edges system-generated.

• The ‘kinkyness’ of the edges. Smooth edges
were considered as computer-generated, while
those with ‘bumps and curves’ were classified as
hand-drawn.

• The edge connectors. Edges with connectors
close to the node boundary were labelled system-
generated as ‘the human dots are less accurate’.

General comments made it clear that the participants
found this a very difficult task; e.g. “Nigh on
impossible to make a decision. They all look the
same”, “For the majority of the lines, I just guessed.”

6. Discussion

Our goal in this project is to retain the hand-drawn
appearance of edges in a graph drawing sketching
system when the manual or automatic repositioning
of nodes requires that they be redrawn.

Our implementation of a Context Reflow algorithm
is based on our observations of how people draw
graphs. It is both simple and flexible, and in this
paper we have demonstrated that its results are
indistinguishable from hand-drawn edges.

Our results indicate further improvements to the
edge-reflow algorithm; in particular, the placement of
the edge connectors appears to be too precise to be
comparable to hand-drawn edges.

We also need to consider how to adapt this
algorithm to deal with several interfering nodes,
rather than one. In addition, we are keen on
investigating whether using a library of hand-drawn
curved edges which may be morphed and adjusted at
real time may be useful in edge reflow.

We have implemented other reflow algorithms and
chose the Context Reflow one for this first empirical
study based on our own intuition. An empirical
comparison with the Gaussian method (Figure 7 (c))

and with enhanced versions of our Context Reflow
method is needed in order to determine the best
reflow algorithm for maintaining the hand-drawn
appearance of the graph.

7. Conclusion

Many algorithms for edge reflow have been
developed: the strength of the one reported here is
that its design is based on observations of humans
creating graphs, and that its success has been
empirically validated.

Sketch design tools that do not preserve hand-
drawn appearance do not fully utilize the stylus and
interfere with one of the known advantages of pencil
and paper. Our reflow algorithm is a validated
approach to ensuring that the hand-drawn appearance
of a graph is maintained after modification.

References

[1] Anton, H and R. C. Busby, Contemporary Linear
Algebra, John Wiley & Sons, Inc, 2003.

[2] Arvo, C and K. Novins, Appearance-preserving
manipulation of hand-drawn graphs, Graphite, ACM,
2006, pp. 61-68.

[3] Ao, X., Wang, X,. Jiang, W. and G. Dai, Structuring
and Manipulating Hand-Sketched Diagrams, Sketch
Based Interfaces and Modeling, Eurographics,
Riverside, CA, USA, 2007

[4] Bailey, B. P. and J. A. Konstan, Are Informal Tools
Better? Comparing DEMAIS, Pencil and Paper, and
Authorware for Early Multimedia Design, CHI 2003,
ACM, Ft Lauderdale, 2003, pp. 313-320.

[5] Dwyer, T., Marriott, K., and Wybrow, M. Dunnart: A
Constraint-Based Network Diagram Authoring Tool. In
GD 2008, pp 420-431.

[6] Goldschmidt, G., The backtalk of self-generated
sketches, in J. S. Gero and B. Tversky, eds., Visual and
spatial reasoning in design, Key Centre, University of
Sydney, Sydney, 1999, pp. 163-184.

[7] Igarashi, T., Moscovich T, .and J. F. Hughes, As-Rigid-
As-Possible Shape Manipulation, International
Conference on Computer Graphics and Interactive
Techniques, ACM New York, NY, USA, Los Angeles,
California, 2005, pp. 1134 - 1141.

[8] Purchase, H, Carrington, D. and J.-A. Allder, Empirical
Evaluation of Aesthetics-based Graph Layout
Empirical Software Engineering, 7, 2002, pp. 233-255.

[9] Purchase, H., Which aesthetic has the greatest effect on
human understanding? , Graph Drawing, Springer
Berlin / Heidelberg, 1997, pp. 248-261.

[10] Reid, P., Hallett-Hook, F., Plimmer, B. and H.
Purchase, Applying Layout Algorithms to Hand-drawn
Graphs, OzCHI 2007: Entertaining User Interfaces
ACM, Adelaide, 2007, pp. 203-206.

[11] Soni, BK., Thompson, JF., and N. P. Weatherill,
Computer-Aided Geometric Design, Handbook of Grid
Generation, CRC Press LLC, 1999.

[12] Tversky, B., What does drawing reveal about thinking,
Visual and spatial reasoning in design, Cambridge,
Mass., 1999, pp. 75-81.

[13] Ware, C. Purchase, H., Colpoys, L., and M. McGill,
Cognitive measurements of graph aesthetics,
Information Visualization 2002, pp. 103 – 110.

[14] Yeung, L., B. Plimmer, Lobb, B. Elliffe, D., 2008.
Effect of Fidelity in Diagram Presentation HCI 2008.
D. England. Liverpool, BCS. 1: 35-45.

